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Abstract

The purpose of this paper is demonstrate how graphical analyses can t-nhance
the interpretation and understanding of multidimensional item response theory
(IRT) analyses. Conceptually many of the unidimensional IRT concepts such
as item characteristic curves, information, etc., can be extended to multiple
dimensions. However, as the dimensionality increases, new problems/issues
arise, most notably how to represent these conceptual features within a
multidimensional framework. This paper provides examples of different

graphical representations including item response surfaces, information vectors,
and centroid plots of conditional two-dimensional ability distributions given
number correct score. All of which are intended to supplement quantitative
and substantive analyses and thereby help the testing practitioner determine
more precisely what a test is measuring, the degree of the measurement
precision, and the consistency of the assessment process.
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Graphical Representation of Multidimensional

Item Response Theory Analysis

Most cognitive achievement tests measure, to different degrees, multiple

skills or skill composites. As such, testing practitioners have the responsibility

to establish the construct validity of their test and subsequently provide an

interpretation for their users. If a test is measuring multiple skills some

questions that need to he immediately addressed include: What composite skills

are being measured? Of the skills being measured which are primary

(intended-to-he-measured) and which are secondary (not-intended-to-be

measured)'? How accurately are each of the various composites being assessed?

What is the correct interpretation of the number correct (or standard) score

scale? Is this interpretation consistent throughout the entire observe score

range, or do low scores reflect levels of one skill composite and high scores

levels of another skill composite? Could the secondary skills result in

differential performance between identifiable groups of examinees?

Typically, routine sets of item, test, and DIF analyses are conducted

after every administration of a standardized test. The purpose of this paper is

to present a series of graphical representation of multidimensional analyses that

can supplement these analyses. The goal of pictorially representing quantitative

results is to help the practitioner gain more insight into the measurement

process and thus, strengthen the relationship between test construction process

and the quantitative analyses of the test results. Graphical analyses serve

several functions:

1. They can provide a visual perspective that can triangulate or cross

validate traditional quantitative item, test, and bias analyses;
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2. They help measurement specialists gain a better conceptual

understanding of the principles of measurement as they apply to the

their test;

3. They n help to strengthen the link between quantitative analyses

and substantive interpretations of what a test is measuring and

how well it is measuring;

4. They can be used to establish a "feedback loop" so that information

gained from each administration can be recycled to help improve

subsequent test construction procedures and provide insight about

the merit of future program considerations (e.g., adaptive testing).

Background

The multidimensionality of a test is difficult to determine and always

subject to interpretation. One common procedure is to construct a scree plot of

the eigenvalues obtained from a principal axis factor analysis of the interitem

tetrachoric correlation matrix (Reckase, 1979). One problem with this

approach is trying to decide if the second (and possibly third) eigenvalues are

large enough to be significant and denoted as primary dimensions or

characterize random noise in the measurement process. Horn (1965) and

Drasgow and Lissak (1983) suggested that interpretation could be enhanced by

comparing the scree plot to one created from a factor analysis of randomly

generated test data containing the same number of items.

Other approaches used to assess dimensionality include checking the

assumption of local independence via the variance covariance matrix for

examinees within different intervals on the ability scale (McDonald, 1981;

Tucker, Humphreys, & Rosnowski, 1986). A somewhat similar approach was

suggested by Stout (1987). One outgrowth of Stout's research is a computer

program (DIMTEST) that allows users to apply large sample theory and

5
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vatistically test the assumption that one cluster of items is dimensionally

distinct from another. Recently Kim and Stout (1994) have developed a

statistic, that is also based on conditional covaiiances, ê, that has been

extremely successful in identifying the correct dirnensionality of generated test

data with different correlational structure between the ability dimensions.

Once a multidimensional structure has been confirmed both statistically

and substantively, practitioners can use one of several multidimensional item

response theory programs (NOHARM, Fraser & McDonald (1988);

TESTFACT, Wilson, Wood & Gibbons (1987); MIRTE, Carlson (1987)) to

estimate multidimensional TRT item parameters.

This paper focuses on graphically representing item/test analyses that

are performed on a set of test response data for which it has been confirmed

that there are two dominant abilities being measured. Thus, all of the analyses

discussed that will be below assume that the dimensionality for a given test has

been thoroughly investigated and that two-dimensional item response theory

(IRT) item parameters have been estimated.

As in the unidimensional case, multidimensionally there are three main

characteristics of items that we try to model difficulty, discrimination, and

guessing. Extending the concept of the ICC to multiple dimensions becomes

somewhat complicated. Partly because in two dimensions ICC's become item

characteristic surfaces. Additionally within a multidimensional framework an

additional attribute must be cons;dered for each item: the composite of multiple

skills the item measuring best. Within a unidimensional framework, an item

discriminates, to varying degrees, between all levels of underlying ability.

However, there is a range in which the discrimination is optimal.

Multidimensional ly an item has the capability of distinguishing between levels

of many com)osites, but optimally between levels of just one composite skill.

The goal is tc identify this composite.

0
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Representations in this paper are based upon the compensatory two-
dimensional IRT model. Using this model probability of a correct response to
item i can be expressed as

P(X1-1) c + (1 -c1)
alto k.e"

Oak+ di
1.04-e"

where Xi is the score (0,1) on item i,

aik = au,..., aim) is the vector of item discrimination

parameters,

di is a scalar difficulty parameter of item i, and

ci is a scalar guessing parameter of item i, and

Ok (01, 02, , Om) is the vector of ability parameters

(1)

In this formulation there is one item discrimination parameter for each

dimension being modeled, but only one overall item difficulty parameter.

Because the terms in the exponent (i.e., the logit) are additive, being low on
one ability can be compensated for by being high on the other abilities.

It is important to note that the characteristics that are being modeled
should always be examined in concert with the substantive and contextual

features of the individual items. In fact, this is the only way one can correctly

interpret the meaning of the dimensional structure.

Provided below are different graphical representations designed to
supplement traditional two-dimensional item/test analyses. Although, by itself
each analysis may answer a different question about what the test is measuring,

there is a lot of confirmation between analyses that also needs to occur.

The data that are used to illustrate each example come from a two-

dimensional estimation of item parameters for two Law School Admissions

7
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Tests (LSAT). These parameters were obtained using NOHARM, a

multidimensional IRT estimation program for two forms of the LSAT

(December, 1991 and October, 1992). Each calibration was done on a random

sample of 5000 examinees. Because NOHARM estimates parameters for the

two-dimensional normal ogive model the parameters estimates were resealed

for the logistic model in (1).

It needs to be stressed that the quality of graphical representations and

subsequent interpretations demands accurate estimates. The representations are

divided into four broad categories: ability estimation representation, item

representation, information representation, conditional analyses, and expected

score distribution. Each analysis is prompted by a question about the

measurement process.

Ability estimation representation:

One logical use of the two-dimensional item parameter estimates is to

obtain ability estimates for examinees or identified groups of examinees to

compare their distributions. That is, how disparate are the ability distributions

for black and white examinees, and does this difference lead to differential item

functioning (DIF). Certain response vectors may yield abnormal ability

estimates. The maximum likelihood ability estimation promlure is graphically

represented in Figure 1. Represented in this diagram are the log likelihood

surface, corresponding contour and the location of the intermediate ability

estimates for each iteration of a Newton Raphson maximum likelihood

estimation for a specified set of item parameters and given response vector.

The location of the first and final ability estimates are numbered above the

surface and on the contour. The final estimate is provided in the title.

Insert Figure 1 about here
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Ability estimates that do not reach convergence, or have a large standard error

of measurement could be investigated from a graphical perspective to provide

further insight.

Item representation

Graphically, the probability of a correct response given two abilities can

be graphically depicted via the item characteristic surface, ICS. Several ways

are available by which we can represent a single item: construct the ICS,

construct a contour of the ICS, use vector notation (Reckase, 1986).

Four different perspectives of an item characteristic surface are shown

in Figure 2. In colored plots the bottom side would be represented with a

different color than the top side. Although somewhat appealing such

representations are not very informative, nor do they enable easy comparisons

between items.

Insert Figure 2 about here

A second way to represent an item is to create the contour of the ICS.

The contour lines are equiprobability contours. For the particular

multidimensional model described in (1) these contours will always be parallel.

Examinees whose 01,02 ability places them on the same contour all have the

same probability of responding correctly to the item. Contour plots are more

informative than the surface plots because they permit one to easily note

several features of the item:

1) The ability composite the item is best measuring (i.e., the composite

direction orthogonal to the equiprobability contours).

2) Where in the ability plane the item is most effective at distinguishing

between ability levels (i.e., is most discriminating). The greater the

slope of the surface the more discriminating the item, and hence, the

9
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closer together the equiprobability contours.

3) The difficulty of the item. Assuming a particular underlying bivariate

ability distribution one could roughly estimate the proportion of

examinees that would be eypected to get the item correct.

The contour of the ICS of the item shown in Figure 2 is graphed in Figure 3.

Insert Figure 3 about here

The one drawback of contour plots is that, like with surface plots, only one

item can be represented at a time.

The final way to represent items in a two-dimensional ability plane is to

use vector notation of Reckase (1986). When represented as a vector the

overall discrimination of the item is denoted by the value of MDISC:

MDISC - Vaf +

The amount of discrimination is indicated by the length of the vector. All

vectors if extended would pass through the origin of the latent ability plane.

Because the discrimination parameters are constrained to be positive vectors are

located in only the first and third quadrants. The angular direction of the

vector from the 01 axis represents the composite of 01,02 ability that is being

most accurately measured. This implies that the vector representing an item

will always lie orthogonal to the equiprobability contours. The difficulty of the

item is denoted by the location of the vector in the space. That is, the tail of

the vector lies upon the p = .5 equiprobability contour. Thus, easy items will

lie in the third quadrant, difficult items will lie in the first quadrant.

One additional feature that has been added to Reckase's (1991) notation

is the denoting of the size of the guessing parameter. Items with a guessing

parameter less than .1 have and open arrow at the tip ( ); items with a c

estimate between .1 and .2 have a completed arrowhead 0; and items with
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large c estimates, greater than .2, will have a closed arrow.

Vectors for three items are drawn in Figure 4. Item One (al = .4,

a2 =.6 , d = 2.4 , c = .15) is an easy item, moderately discriminating, and is

measuring best in about a 56° direction (primarily 02). Item Two (a1 =1.8,

a2 =.2 , d =-1.5, c =.25) is a more difficult item, highly discriminating, has

a relatively large guessing parameter, and is measuring best in the 6° direction

(predominantly 01). The third vector corresponds to the item represented in

Figures 2 and 3.

Insert Figure 4 about here

Information Representation

In IRT the accuracy of the measurement process is discussed in terms of

"information", information is inversely related to the standard error of

measurement. That is, the smaller the standard error of measurement, the

greater the information, and hence, the greater the measurement precision of

the test.

Ackerman (1992) developed procedures to compute the

multidimensional information function for the multidimensional IRT model

given in (1) taking into account the lack of local independence once a direction

in the latent ability space is specified. Ackerman determined that the amount

of information provided by an item i at a specified 01,02 in the direction a can

be computed as

- (cos a )2Var(61 1(3,02) (sIn a )2 Var (2101, 02) + 2 (sIn2a )Cov (61 , 62101 , 02 ) (2)

(The reader should refer to (Ackerman, 1992) for a more in depth discussion.)

Because items are capable of distinguishing between levels of abilities

11
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To investigate this relationship the following procedure was performed.

First, a group of examinees was randomly generated from a bivariate normal

distribution (peo. = .5, a value estimated of correlation between 01 and 02 by

NOHARM). The latent plane was then divided into eight "wedges" or octants.

Using the generated response data for the examinees in each octant, the angular

direction or 0002 composite that had the greatest correlation with the observed

score was calculated. The results are displayed in Figure 7. In each octant the

number indicating the angular direction of maximum correlation is written.

The font size of the number indicates the magnitude of the linear relationship

(r2): the larger the number the stronger the relationship or correlation.

Insert Figure 7 about here

Two important features should be noted in Figure 7. First, it is

important that the observed score scale have a consistent interpretation

throughout the observable range. A sense of score scale consistency can be

seen in each panel, especially in the first, second, and fifth octants where a

majority of examinees would be located with a correlation of .5.

A second important analysis is to compare results across forms. If the

different forms are truly parallel the relationship between the underlying

abilities and the number correct score would be the same. That is, over time

the meaning imparted to the observed score scale should remain constant within

and between forms. For these two forms there appears to be a "consistent"

relationship between 01, 02 and X with the largest angular composite difference

within forms occurring in the fourth and sixth octants for each form.

Another question that relates to the measurement precision question is:

What is the expected observed score for ean examinee? This can be

graphically determined by creating a true score surface plot. The expected

12
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score or true score, E, for any one examin is simply the sum of the

probabilities of a correct response (as given in (1) )for each of the n items in

the test,

4 E e2)

To generate the surface, is computed for examinees at selected 01,02 points

in a 31 x 31 grid over the ability plane. A surface and corresponding contour

plot is then created. The contours provide insight about how the latent ability

plane is mapped onto the true score scale. Note, that the contour lines do not

have to be parallel, and that some curvlinearity may occur if subtest items are

measuring dimensionally distinct ability composites. The true score surfaces

and their corresponding contours for the two LSAT forms are displayed in

Figure 8.

Insert Figure 8 about here

The contour of the true score surface plot can be directly related to the

clamshell plots. That is, the longest vectors in the clamshell plot would be

orthogonal to the true score contour lines. Likewise regions which contain the

longest vectors in the clamshell plot (i.e., the regions where the measurement

precision is the greatest) should be the same regions where the true score

contours are closest together (indicating regions in which the test is doing a

better job at distinguishing between levels of true score).

After computing the true score surface for each form, the next logical

question would be to compare them. That is, if two test forms are truly

parallel any examinee would be expected to have the same true score no matter

which form he or she was given. This implies that if two LSAT forms are
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for different 01,02 composites several natural questions ai ,se:

1. What composite of skills is being best measured by each subtest, as

well as the total test?

2. Is the same composite of skills being most accurately throughout the

two-dimensional ability plane?

3. Does the number correct score scale have the same meaning or

interpretation throughout the observable range of scores?

4. Which subtests provide the greatest measurement precision and for

which ability composites?

5. Is the same degree of measurement precision of various composite

skills displayed across forms?

An interesting way to graphically display information was developed by

Reckase and McKinley (1991). Referred to as "clamshell" plots because of

their shape, such plots denote the amount of information at selected points in

several different directions. Specifically, a "clamshell " plot is created by

computing the amount of information (using (2)) at selected 01,02 points in a

7 x 7 grid of points. The amount of information that the test is providing for

10 different composites or measurement directions (from 0° to 900 in 10°

increments) is computed for each point and represented by a vector originating

from the specified point. The result of the ten vectors at each two-dimensional

ability point resembles a "clamshell".

The clamshell plot for each of the two LSAT forms are displayed in

Figure 5. In the top panel of Figure 5 is the information plot for the estimated

item parameters for the entire LSAT December 1991 test and in the bottom

panel are the results for the October 1992 test. The similarity is clearly

remarkable with all composites being measured about equally well, with the

40° to 50° being measured most accurately for both forms over most of the

latent ability plane.

14
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Insert Figure 5 about here

Although clamshell plots help us to ascertain the amount of information

and which composites are being best measured, one may want to know what

direction is being best measured overall at each of the 49 points. This

direction can found by examining all composites from 0° to 90° in 1°

increments and noting the direction having the largest value. This process

would be repeated at each of the selected points. One way to display these

results is shown in Figure 6. At each selected point the number denoting the

angular direction of the 01,02 composite that is being measured most precisely

is written. The font size of the number indicates the relative amount of

information in the specified direction: the larger the font the greater the

measurement precision.

Insert Figure 6 about here

Results for the entire December 1991 test are again shown in the top

panel, with the results for the entire October 1992 test displayed in the bottom

panel. The degree of similarity between the forms suggests that they are

remarkably parallel. Samejima (1977) referred to tests that have similar

information profiles as "weakly parallel tests".

Practitioners usually report test results in terms of raw scores or

standard scores. Thus, there is a need to determine the relationship between

the number correct score scale and the two-dimensional latent ability plane.

One way to examine this relationship is to compute the linear weighting of 01

and 02 that ?rovides the greatest relationship or correlation with the number

correct scale.

15
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parallel their true score surfaces should be very similar. One way to analyze

the degree of parallelism, is to graph the surface representing the difference

between the two true score surfaces. Such a plot is shown in Figure 9.

Insert Figure 9 about here

In Figure 9 the zero plane is outlined. If there were no difference between the

true score surfaces (i.e., the forms were strictly parallel), the difference surface

would lie in this zero plane. Regions where the difference surface lies above

the plane (e.g., first quadrant) indicate that examinees would have a higher true

score on the December 1991 form; where the difference surface dips below the

zero plane (e.g., thii quadrant), indicates regions where examinees would

have a higher true score on the October 1992 form. The maximum difference

indicated by the contour is about two true score points somewhat remarkable

for two 101-item tests.

If pretest sample sizes permitted accurate multidimensional IRT

calibration of the item parameters this analysis could lx conducted as part of

the test construction phase and before any forms are administered.

Another question still remains concerning the true score surface. Any

curvilinearity of the true score contours implies that differences between levels

of true score may not have the same meaning (in terms of the 01, 02-

composites) throughout all regions of the ability plane. More specifically, what

composite of 01,02 is being best measured for the examinees at each true score

level?

To investigate this issue further thirty different 01,02-combinations,

each having the same true score, were systematically located for each possible

true score. At each of the thirty ability points, the direction of maximum

information was computed, and an average direction, weighted by the density

of the examinees at each of the thirty points, was then calculated. This process

1. 0
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was repeated for each possible true score. The results for each of the two

LSAT forms is displayed in Figure 10.

Insert Figure 10 about here

Consistency of scale interpretation can be seen by the narrow band

containing the best measured composites at each possible true score. Again,

the similarity between the two forms appears to be exceptional.

Conditional analyses

Another set of analyses focus on such measurement questions as: What

is the mean 01, and mean 02 (or centroid) of the people who would be

expected to achieve a particular score? How variable (in terms of their 01

values and 02 values) is the distribution of examinees who would be expected

to achieve a particular score? These questions are also at the heart of the issue

of score scale consistency and have strong implications for issues relating to

equating and bias analyses.

To answer the first question the conditional bivariate distribution

h(01, 021X-4 , Os x s n

for each possible raw score x, is computed. Assuming a bivariate normal

distribution of ability, fo,, , and using the estimated item response function

P(01,02) given in (1), the conditional ability distributions, h(01, 021 x) can be

estimated by the Bayesian formula

Prob(9 - and X-x)
h(01,021x) Prob(X-x)

Prob(X- x le - e)f(01,02)
h(01,021x) (3)

f f Prob(X-x I 03-0)f (el, e2) )d(02)
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Using a recursive formula developed by Lord and Stocking (1983), the

Prob(X-x10- 0) was computed for a grid of (01,02) values and h(01,02I x)

estimated using (3). The centroids of the distributions,

(e, 82) - r(h(011 02)Ix-x)

were then plotted. The results form each LSAT form are plotted for each of
the three subtests Analytical Reasoning, Logical Reasoning, and Reading

Comprehension and the total test in Figures 11 (December 1991) and 12

(October 1992).

Insert Figures 11 & 12 about here

These figures are truly interesting. The numbers that are plotted

indicate the particular score category and the location of the number is the

position of the centroid for that score category. The differences between the

various subtests are quite noticeable. Such analysis helps to defme

substantively 01 as representing analytical reasoning skill, and 02 as reading

comprehension skill. The logical reasoning items appear to be measuring an

equal weighting of both skills, as does the over all total score.

Related to the plot of the centroids is another graph highlighting the

second moments of the conditional distributions discussed in the previous plots.

In order for the observed score scale to have a consistent interpretation in

terms of 01 and 02 not only would the centroids have to be linear but the

conditional 01 and 02 for each expected score must be similar. For a given

score category, the ability having the smaller variance is represents the

dimension that is being measured more accurately.

In the process of computing the conditional centroids, the conditional

variances were also calculated. The size of these variances are represented as

an ellipse. The length of the horizontal axis of the ellipse denotes the size of

18



Graphical Representation of MIRT Analyses

18

the 01 variance. The size of the vertical axis indicates the 02 variance. Thus,

a circle, would indicate that both abilities are measured equally well for that

expected score category. Graphically the ellipses are color coded to indicate

which variance is greater. When graphefl each ellipse is centered about its

corresponding centroid. For the sake of clarity ellipses are drawn for only

selected score categories. The number indicating the particular score category

is located at the centroid inside the ellipse. The conditional variance ellipses

for the LSAT forms are illustrated in Figures 13 (December, 1991) and 14

(October 1992).

Insert Figures 13 & 14 about here

Th vertically elongated ellipses in the top left panel for both forms

imply that these items are best measuring 01. (This could be confirmed by

constructing a plot like that shown in Figure 6 for each subtest individually.)

A somewhat "opposite" case occurs with the Reading comprehension items.

Somewhat ironical, is that the net effect when all tbrcv subtest types are

combined is that there appears to be a consistent measure across the true score

scale of a composite that reflects an equal weighting of both analytical

reasoning and reading comprehension.

Expected score distribution

The final graphical analysis relates to the expected score distribution

given a set of two-dimensional item parameters. This information, which is

computed in concert with the centroid analysis, is illustrated in Figure 15. In

this figure, the contour of the underlying ability distribution, and corresponding

centroid is graphed in the bottom part of the plot. At the top of the plot is a

relative frequency curve of the expected true score distribution. This

information is truly important to furnish a check of the degree of parallelism

1 j
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between created test forms before they are administered. In Figure 15, the

expected score distribution for the 49-item logical reasoning test for the

December l991 form is drawn.

Insert Figure 15 about here

Discussion

This paper outlines a series of graphical representations of item and test

analyses that can be used to provide the testing practitioner with more insight

about what a test is measuring, how well it is measuring, and how the score

scale can best be interpreted. All of the analyses shown are predicated on the

fact that a two-dimensional solution is the correct solution and the accurate

multidimensional IRT item parameter estimates have been obtained.

There should always be a close tie between the test construction phase

and the post administration analyses. The bridge between statistical analyses

and item writing is an important one; even moreso because of the issue of

multidimensionality. Item writers' work should not stop after a test form has

been administered. Likewise psychometricians' work should not stop after the

item analysis and equating have been completed. Collectively they need to

perform a post hoc analysis to consider such questions as: What makes an

item more discriminating or more difficult than others? What features of the

text contribute to an item's potential to measure different skill composites?

Once hypc,Lheses about these issues have been developed item writers should be

challenged to see if they can create items and subsequently predict certain

multidimensional characteristics. Through an iterative and cooperative effort

the goal should be to fmd the ideal magnification power provided by the

multidimensional analytical lens that can accurately detect the import.ait

attributes designated by the test specifications that are used to establish the

construct validity of the test.

2
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Figure Captions

Figure 1. A graphical illustration of the Newton-Raphson MLE ability estimation in a two-

dimensional ability space.

Figure 2. Four perspectives of an item characteristic surface.

Figure 3. The contour plot of an item characteristic surface.

Figure 4. Vector representation of two-dimensional items.

Figure 5. Test information vectors for ten different ability composites from 0° to 90° in ten

degree increments at 49 selected 61,02-abilities.

Figure 6. Angular composites of maximum information at 49 selected 01,02-abilities.

Figure 7. Angular composites have the largest correlation with number correct score for

generated examinees in eight regions of the two-dimensional ability plane.

Figure 8. Two-dimensional true score surface and corresponding contour plots.

Figure 9. A plot of the difference between the true score surfaces for the December 1991

LSAT test minus the true score surface for the October 1992 LSAT test.

Figure 10. Angle of average maximum information for each possible true score value.

Figure 1 1. Conditional centroids for selected observed score values for the three LSAT

subtests and total test from the December 1991 administration.

Figure 12. Conditione centroids for selected observed score values for the three LSAT

subtests and total test from the October 1992 administration.

Figure 13. Conditional variance ellipses for selected observed score values of the three LSAT

sub Nts and total test from the December 1991 administration.

Figure 14. Conditional variance ellipses for selected observed score values of the three LSAT

subtests and total test from the October 1992 administration.

Figure 15, Expected true score distribution and contour of specified underlying two-

dimensional ability distribution for the December 1991 Logical Reasoning test.
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